

Mfg. Thermoplastic Compounds & Alloys

Trading

Toll Compounding

www.dharapetrochemicals.com

Vision

Mark Global footprints

Mission

Excel with harmonious amalgamation of Man & Machine.

About Us

Dhara Petrochemicals has been established as an Engineering plastic trading company in India in the year 2000. Our traditional business model is based on the accomplishment of agency tie ups with Samsung, DIC and few well renowned Engineering Plastic Manufacturers from India & Abroad.

Looking at the cutting edge competition company has decided to plunge in to backward integration and have started manufacturing of engineering Blends and alloys with a vision to provide quality services that exceeds the expectation of esteemed customers. Company has tied up with Axel Polymers one of the oldest and most experienced compounder having state of art facilities and global approvals with annual capacity of 10000 MT's.

Company has three Major activities under One Roof.

- * Manufacturing of plastics engineering compounds.
- * Trading of plastics Raw materials
- * Toll compounding..

As a social responsibility company has started new range of "Utility Compounds" where it not only protect the environment by using the reprocess plastics but at the same time it also produces given quality with economical price.

Way to engineering compounds for Creating Tomorrow

DPPL Milestones

- Established as a trading firm under the name of "Dhara Industries"
- Appointed as an agent of Cheil Industries Korea for their product range of ABS, SAN & Tr. ABS on all over India basis.
- Dhara Industries has been converted into Private
 Limited and named as Dhara Petrochemicals
 Private Limited.
- Appointed as an agent for DIC Corporation
 Japan for their PPS material on all over India Basis
- 2013 Started Manufacturing of Engineering Polymer
 Compounds under own Brand Names

AXEL Milestones

- 1992 Established "Axel Polymers Limited"
- Compounding plant was ready with first set to

 Manufacturing infrastructure
- Double the capacities upto 10,000 TPA with
- 2009 Established SBU : Repellants-Manufacturing of treated textiles
- 2013 Merged with DPPL as a manufacturing arm for engineering polymer compounds & alloys.

Mfg. Thermoplastic Compounds & Alloys

Our steps to Success

- * Proactive manufacturing facilities
- * Continuous improvement
- * Consistent quality & punctuality
- * Upgradation of knowledge
- * Adherence to statutory compliances
- * Overall Excellence

Toll Compounding

Trading

Engineering Polymers

Speciality Polymers

Blends & Alloys

'Unbound passion, Unmatched skills and Uncompromising quality, steers axel from one success to another'

PRODUCTION FACILITIES

3 Twin Screw Compounding Lines Line 1 W&P (GmbH)- ZSK 58 M 96

Line 2 STEER-Omega-60

Line 3 STEER-61

SUPPORTING EQUIPMENTS

- *Pneumatic Suction feeders for Basic Raw Material
- *Metal Separator for Ferrous and Non-ferrous Material
- *Pre-Mixers 4 nos. capacity of 100 350 Kgs. each
- *Spiral and Pneumatic Conveying Systems
- *Storage Silos 5 nos. total capacity of 6000
- *Double Cone Vacuum Dryer with Nitrogen blanketing
- *Nitrogen Plant capacity 5 Nm3- purity level of 99.998 %
- *Air Scrubber for processing drug-filled grades
- *Overhead Crane / Hoist for loading & unloading
- *Jumbo Pallet Stacker, Pallet Trucks for material movement
- *Label Printing Machine

PRODUCTION EXPERTISE

We at AXEL have excelled in producing Grades with *Glass Fiber

- *Mica
- *Mineral
- *Flame Retardants Halogenated & Non-Halogenated
- *Impact Modifiers to suit special applications
- *Highly Filled Grades with filler contents up to 60%
- *UV Stabilizers to suit special applications
- *PP + Active (Deltamethrin loaded chips)
- *Combination of any of the above fillers

QUALITY ASSURANCE

Follow ISO 9001:2008 QMS and have SOPs

- *Injection Moulding Machine with test specimen tool set *MFI / MVR
- *Impact
- *UTM Tensile & Flexural Strengths
- *GWT Glow wire tests
- *Muffle furnace
- *Moisture analysis
- *Spectrophotometer
- *Color-o-scan chamber
- *Visual inspection chamber
- *Vacuum oven
 - Tested as per UL 94 (External Lab)

Above all Skillful and Dedicated Manpower!

Under the banner of "DPPL" we offer a product portfolio of thermoplastic compounded grades...

Our USP is the commitment to deliver customized solution to suit application needs keeping cost under focus. These grades are made using various Polymers and reinforcements and speciality additives systems complying to international standards and certifications.

Individual grades are offered in an optional choice of customized pre-pigmented opaque colours. These are broadly categorized as:

- Unfilled
- Reinforced
- Flame Retardant
- Alloys of miscible and immiscible polymers

Product Range

Dpnor

mPPE Compounds

Dplon

Polycarbonate Compounds

Dplen

PBT Compounds

Dpnyl

Nylon Compounds

Dpron

Polypropylene Compounds

2

Utility Compounds

Trading

- *Polyphynlene Sulfide (PPS)
- *MS Resin
- *Thermoplastic Polyurethane
- *Transperant ABS
- *Polycarbonate (PC) Clear
- *ABS Resin
- & Speciality Polymers

Modified Polyphenylene Ether Compounds

Introduction

Dpnor modified PPE is a strong engineering plastic with outstanding mechanical, thermal, and electrical properties. Low moisture absorption and low thermal expansion make Dpnor one of the most dimensionally stable thermoplastics available. Dpnor is widely used for water portable parts, electrical housings and structural components since it has excellent insulating properties, flame resistance, and dimensional stability over a wide range of service temperatures. Dpnor is often selected for fluid handling applications since it has low moisture absorption and excellent strength and stiffness. Dpnor is easy to fabricate, paint, and glue.

Features of Dpnor Compounds

- · Excellent dimensional stability
- · High strength, stiffness and toughness
- · Easy to machine
- · High dielectric strength

- Good impact resistance
- · Low moisture absorption
- · Chemical resistance

We have full range of Modified Polyphenylene Ether (mPPE) Compounds for use in injection moulding. It is compounded with Glass, FR & other chemical additives to give properties like excellent heat & water resistance. It is available in Natural, Black & Colours.

Properties	Standards	Unit	Unfilled	Grades	Unfilled FR	
			Dpnor-UF- M 010 (Natural)	Dpnor-UF- M 012 (Black)	Dpnor-UF- M9-010 (Natura	
Physical Density Melt Flow Index @ 280°C /3.8 Kg. Water Absorption (24 hrs immersion at 23 +/- 1°C) Shrinkage [In Flow Direction @3.2 mm Thickness)	ASTM D792 ASTM D 1238 ASTM D 570 ASTM D 955	g/cc g/10 min %	1.04 - 0.12 0.65	1.04 - 0.12 0.65	1.08 - 0.10 0.65	
Mechanical Tensile Strength @ Yield Flexural Strength Flexural Modulus Izod Impact Strength (Notched) @ 23°C Hardness Abrasion Resistance (CS-17,1000gms,1000 cycles)	ASTM D-638 ASTM D-790 ASTM D-790 ASTM D-256 ASTM D 2240 ASTM D 1044	Kg/cm² Kg/cm² Kg/cm² Kg.cm/cm Shore D gms	450 690 23300 13 78	450 690 23300 12 78	490 800 23500 14 78	
Flammability Flammability Rating At 3.2 mm Thickness	UL 94	mm/mm	НВ	НВ	V0@0.8mm V0@1.6mm	
Thermal Heat Deflection Temperature @ 18.5 Kg/cm²	ASTM D-648	°C	111	111	110	

Class	Grade	Filler Type	Typical Application
Unfilled General/	Dpnor UF-M-010	Unfilled Natural	Heat Resistant Parts,
Flame Retardant	Dpnor UF-M-012	Unfilled Black	Automobile Interiors, Solar Panel
110101010101	Dpnor UF-M9-010	Unfilled FR VO Natural	Pipe Fitting, Electrical Parts
Glassfilled General	Dpnor GF-M-210	20% Glass Filled Natural	Impeller and Pump
	Dpnor GF-M-212	20% Glass Filled Black	Housing Printer Frame,
	Dpnor GF-M-310	30% Glass Filled Natural	Tray
	Dpnor GF-M-312	30% Glass Filled Black	
Glassfilled/	Dpnor GF-M9-112	10% FR Glass Filled Black	OA Equipment, Impeller and
Flame Retardant	Dpnor GF-M9-212	20% FR Glass Filled Black	Pump Housing
DDE /DA DIJ-	Dpnor- UF-MN-010	Unfilled Natural	Wheel Cap, Door Handles,
PPE/PA Blends	Dpnor- GF-MN-312	30% Glass Filled Black	Fender For Automobile

Chemical Resistance Properties

Denor is resistant to many common solvents, fats and oils. The chemical resistance depends on the concentration, temperature and duration of contact

Chemicals	mPPE
30% Sulfuric acid	Excellent
10% Nitric acid	Excellent
10% Hydrochloric acid	Excellent
Sodium hydroxide	Excellent
Ammonium hydroxide	Excellent
Methanol	Excellent
Ethanol	Excellent
Acetone	Poor
Chloroform	Poor
Carbon tetrachloride	Poor
Heptane	Excellent
Toulene	Poor
Gasoline	Poor
Machine oil	Excellent

	Glassfilled Grades			Glass Filled	FR Grades	PPE/PA	Blends
Dpnor-GF- M 210 (Natural)	Dpnor-GF- M 212 (Black)	Dpnor-GF- M 310 (Natural)	Dpnor-GF- M 312 (Black)	Dpnor GF- M9-112 (Black)	Dpnor GF- M9-212 (Black)	Dpnor UF- MN-010 (Natural)	Dpnor GF- MN-312 (Black)
1.24 - 0.05 0.29	1.24 - 0.05 0.25	1.26 - 0.05 0.25	1.26 - 0.05 0.25	1.22 - 0.08 0.49	1.24 - 0.1 0.23	1.09 - 1-1.2	1.3 - 0.91 0.32
1038 1233 76000 12 80 0.026	1100 1343 81000 13 83 0.026	1100 1343 81000 13 83 0.026	1100 1343 81000 11 83 0.026	780 910 54000 10 78	1050 1500 58500 10	600 900 60000 15 80	700 850 58000 10 80
НВ	НВ	НВ	НВ	VO	VO	НВ	НВ
130	132	132	132	115	125	140	180

Polycarbonate Compounds

Introduction

Dplon Polycarbonate is an amorphous thermoplastic engineering polymer is having very good thermal, electrical, mechanical and optical properties polycarbonate is versatile material with attractive processing and physical properties.

Chemical Structure of Polycarbonate

Repeating Chemical structure unit of Polycarbonate made from Bisphenol –A. Polycarbonate is a durable material, unlike most thermoplastics it can resist plastic deformations without cracking or breaking.

Features of Dplon Compounds

- *Durable
- High impact resistance
- *Good electrical insulation

- *Better flame retardant properties
- · Better mechanical properties

We have full range of Dplon Polycarbonate compounds for use in injection moulding, polycarbonate is compounded with Glass, FR and other Additives to produce better mechanical properties it is available in Natural, Black & colours.

Properties	Standards	Unit		Unfilled	d Grades	
			Dplon UF- P-0012 (Tr. Smoke Grey)	Dplon UF- P-011 (B.White)	PC-UF- P-011 (Eco White)	PC-UF- P-012 (Black)
Physical Density Melt Flow Index @ 280°C /3.8 Kg.) Shrinkage (In Flow Direction @3.2 mm Thickness)	ASTM D792 ASTM D 1238 ASTM D 955	g/cc g/10 min %	1.20 22 0.8	1.22 20 0.85	1,22 20 0.85	1.22 20 0.85
Mechanical Tensile Strength @ Yield Flexural Strength Flexural Modulus Izod Impact Strength (Notched) @ 23°C Hardness	ASTM D-638 ASTM D-790 ASTM D-790 ASTM D-256 ASTM D 785	Kg/cm² Kg/cm² Kg/cm² Kg.cm/cm R - Scale	645 780 25500 10.5 120	655 735 25500 10 120	655 735 25500 10.5 120	655 735 25500 10 120
Flammability Flammability Rating At 3.2 mm Thickness Glow Wire Test	UL 94 IEC-60695-2-12	mm/mm °C	V2	VO -	V0	V0 -
Thermal Vicat Softening Point Heat Deflection Temperature @18.5Kg/cm²	ASTM D 1525 ASTM D-648	°C °C	138 130	135	135	135
Electrical Dielectric strength @3.2mm Thickness (No breakdown upto)	ASTM D-149	KV/mm	20	20	20	20

Class	Grade	Filler Type	Typical Application
Unfilled Natural/ Transparent Precoloured	Dplon UF-P-0012 Dplon UF-P-011 Dplon UF-P-011 Dplon UF-P-012	Unfilled Transparent Grey Unfilled B.White Unfilled Eco White Unfilled Black	For Wide Use in Electrical Wiring Devices & Accessories
Glassfilled General	Dplon GF-P-0710 7% Glass Filled Natural Dpnor GF-P-110 10% Glass Filled Natural Dplon GF-P-310 30% Glass Filled Black		Impeller and Pump Housing Printer Frame, Tray
Unfilled Flame Retardant	Dplon UF-P9-0010 Dplon GF-P9-016	Unfilled FR Clear Unfilled FR Grey	Electrical & Electronics Applications
Glassfilled Flame Retardant	Dplon- GF-P9-112	10% Glassfilled FR Black	Terminal Blocks & Energy Meter Housing
Alloys	Dplon- UF-PB-012	PC-PBT Unfilled Black	Structural Parts for Furniture Industry

Chemical Resistance Properties

Fair
Good
Good
Poor
Good
Poor

Glo	assfilled Grades	s	Unfilled Flame Retardant		Glass Filled FR Grades	Alloys (PC+PBT)	
Dplon-GF-P- 0710 (Natural)					Dplon UF-P9-016 (Gun Grey)	Dplon GF-P9-112 (Black)	Dplon UF-PB-012 (Black)
1.22 11 0.32	1,25 11 0,31	1.42 10 0.31	1.17 22 0.8	1.22 20 0.85	1.22 0.31	1.22 35 0.62	
580 900 28000 23 121	600 950 30000 22 121	1150 1500 62000 16 125	650 750 23000 10.5 120	660 750 25500 10.5 120	825 1065 40700 10.35 121	495 630 18500 65 125	
HB -	HB -	HB -	V0 960	V0 960	V0 960	НВ	
135	138	138	138 130	135	132	110	
25	25	25	20	20	25		

PBT Compounds

Introduction

Dplen Polybutylene Terephthalate is a semi crystalline Thermoplastic engineering polymer having application in Electrical & Electronics industry as an insulator. PBT is resistant to solvents & a type of Polyester shrinks very little during forming, is mechanically strong, heat resistant up to 150 or 200 degree with glass fiber reinforcement and can be treated with flame retardants to make it noncombustible.

Features of Dplen Compounds

- · Better heat resistant
- Excellent moldability
- · High resistance to fuels, oil, fats and many solvents

- *Good chemical resistance
- *Excellent electrical properties
- *Excellent wear resistance

We have full range of PBT compounds for use in injection moulding. PBT is compounded with Glass, FR, Mineral and other additives to give excellent electrical properties & moldability. These are available in natural, White, Black & all RAL colour shades.

Properties	Standards	Unit	Unfilled Grades		
			Dplen-UF- B- 010 (Natural)	Dplen-UF- B8- 012 (UV-Black	
Physical Density Melt Flow Index @ 280°C /3.8 Kg.) Shrinkage (In Flow Direction @3.2 mm Thickness)	ASTM D792 ASTM D 1238 ASTM D 955	g/cc g/10 min %	1.32	1.32	
Mechanical Tensile Strength @ Yield Flexural Strength Flexural Modulus Izod Impact Strength (Notched) @ 23°C	ASTM D-638 ASTM D-790 ASTM D-790 ASTM D-256	Kg/cm² Kg/cm² Kg/cm² Kg.cm/cm	500-600 800-900 23000 4.5	500-600 800-900 23000 4.5	
Flammability Flammability Rating At 3.2 mm Thickness Glow Wire Test	UL 94 IEC-60695-2-12	mm/mm °C	HB 650	HB 650	
Electrical Volume Resistivity Surface Resistivity Comparative Tracking Index (CTI) Dielectric strength, 2mm Thickness	IEC60093 IEC60093 IEC60112 D149	ohm-m ohm V KV/mm	15 ¹²	15 ¹²	
Thermal Heat Deflection Temperature @ 4.6 Kg/cm²	ASTM D-648	°C	155	155	

Class	Grade	Filler Type	Typical Application
Unfilled/UV Stabilised	Dplen UF-B-010 Dplen UF-B8-012	Unfilled Natural Unfilled UV Black	Injection Moulding & Compounding Ro system Parts
Glassfilled General	Dplen GF-B-310 Dplen GF-B-312 Dplen GF-B-1516	30% Glass Filled Natural 30% Glass Filled Black 15% Glass Filled Grey	Electrical & Electronics Parts
Glassfilled / Flame Retardant	Dplen GF-B9-311 Dplen GF-B9-316 Dplen GF-B9-1511 Dplen GF-B9-1512	30% FR Glass Filled White 30% FR Glass Filled Grey 15% FR Glass Filled White 15% FR Glass Filled Black	Terminal Blocks & Electrical & Electronic Parts, OA Equipment,
CFL (Reinforced Flame Retardant)	Dplen GF-B9-211 Dplen GF-B9-311	20% FR Reinforced White 30% FR Reinforced White	CFL

Chemical Resistance Properties

Delen is resistant to many common solvents, fats and oils the chemical resistance depends on the concentration, temperature and duration of contact.

Chemicals	PBT
30% Sulfuric acid	Excellent
10% Nitric acid	Excellent
10% Hydrochloric acid	Excellent
Sodium hydroxide	Poor
Ammonium hydroxide	Excellent
Methanol	Excellent
Ethanol	Excellent
Acetone	Excellent
Chloroform	Fair
Carbon tetrachloride	Excellent
Heptone	Excellent
Toulene	Excellent
Gasoline	Excellent
Machine oil	Excellent

Glo	assfilled Grade:	s	Glass F	illed Flame	Retardant G	rades	CFL C	rades
Dplen-GF- B-310 (Natural)	Dplen-GF- B-312 (Black)	Dplen-GF- B-1516 (Grey)	Dplen-GF- B9-311(White)	Dplen-GF- B9-316 (Grey)	Dplen-GF- B9-1511 (White)	Dplen-GF- B9-1512 (Black)	Dplen-GF- B9-211 (White) CFL	DplenGF- B9-311 (White) CFL
1.52	1.52	1.51	1.63	1.63	1.51	1.51	1.54	1.65
0.50-0.70	0.50-0.70	0,4-1,1	0.45	0.45	0.4-1.1	0.4-1.1	1	
1050 1000 79000 8.5	1050 1000 79000 8.5	950 1400 55000 5	1440 1710 77000 7	1440 1710 77000 7	1000 1500 55000 5	1000 1500 55000 5	1020 1700 56000 5	1440 1720 77000 6
HB 650	HB 650	HB 650	V0 960	V0 960	V0 960	V0 960	V0@1.6mm 960	V0@1.6mm 960
	:		10 ¹² 10 ¹⁴ 295	10 ¹² 10 ¹⁴ 295	10 ¹¹ 10 ¹ 295	10 ¹⁷ 10 ¹ 295	10 ¹² 10 ¹⁴ 295	10 ¹³ 10 ¹⁴ 295
200	200	200	210	210	200	200	205	205

Nylon 6 & 66 Compounds

Introduction

Dpnyl Nylonó & Nylonóó is a Crystalline & Hygroscopic thermoplastic engineering Polymer which is widely accepted by the Automotive Industry due to its good mechanical properties.

Chemical Structure of Ny6 & Ny66

Nylon 6 (above) has a structure similar to Nylon 6,6 (below).

Features of Dpnyl Compounds

- High elongation
- *Excellent abrasion resistance
- · Good chemical resistance

- · Easy online paintability
- · Good electrical insulator
- •Melts instead of burning

We have full range of Dpnyl Nylon 6 & 66 Compounds for use in injection moulding. It is compounded with Glass, FR & other chemical additives to enhance the mechanical properties. It is available in Natural, Black & Colours.

Properties	Standards Unit		NY6 Unfilled Grades	NY 6 Glassfilled Grades		
			Dpnyl UF- N-012 (Black)	Dpnyl GF- N-1512 (Black)	Dpnyl GF- N-312 (Black)	Dpnyl GF- N-310 (Natural)
Physical Density Melt Flow Index @ 280°C /3.8 Kg. Shrinkage (In Flow Direction @3.2 mm Thickness)	ASTM D792 ASTM D 1238 ASTM D 955	g/cc g/10 min %	1.12	1.20	1.35 - 0.25	1.35 - 0.31
Mechanical Tensile Strength @ Yield Flexural Strength Flexural Modulus Izod Impact Strength (Notched) @ 23°C	ASTM D-638 ASTM D-790 ASTM D-790 ASTM D-256	Kg/cm² Kg/cm² Kg/cm² Kg.cm/cm	750 900 25000 6	1000 1400 47000 6	1400 1500 75000 10	1450 1550 77500 12.5
Flammability Flammability Rating At 3.2 mm Thickness Glow Wire Test	UL 94 IEC-60695-2-12	mm/mm °C	НВ	НВ	НВ	НВ
Thermal Heat Deflection Temperature @ 18.5 Kg/cm²	ASTM D-648	°C	155	185	200	200

Class	Grade	Filler Type	Typical Application
NY 6 Unfilled	Dpnyl UF-N-012	Unfilled Black	For Wide Use
NY 6 Glassfilled General	Dpnyl GF-N-1512 Dpnyl GF-N-312 Dpnyl GF-N-310	15% Glassfilled Black 30% Glassfilled Black 30% Glassfilled Natural	Impeller and Pump Housing Automotive Application, Industrial Components
NY 6 Glassfilled/ Flame Retardant	Dpnyl GF-N9-416 (HD Grey) Dpnyl GF-N9-310 (Natural)	40% Glassfilled FR V0 Grey 30% Glassfilled FR V0 Natural	E & E Application Railway Applications
NY 66 Unfilled	Dpnyl 66 UF-N-012	Unfilled Black	For Wide Use
NY 66 Glassfilled General	Dpnyl 66 GF-N-5012 HS Dpnyl 66 GF-N-3312 Dpnyl 66 GF-N-312 HS	50% Glassfilled Black 33% Glassfilled Black 30% Glassfilled Black Heat Stabilized	E & E Applications, Automotive Application, Industrial Components

Chemical Resistance Properties

Chemicals	Nylon 6	Nylon 66
Acids-concentrated	Poor	Poor
Acids-dilute	Poor	Poor
Alcohals Alkalis Aromatic	Good	Good
Hydrocarbons	Good-Fair	Good-Fair
Greases and Oils	Good	Good
Halogenated	Good-Fair	Good-Fair
Halogens Ketones	Good-Poor	Good

	Filled Flame nt Grades	NY 66 Unfilled Grades	NY 66 Glassfilled Grades		ades
Dpnyl GF-N9-416 (HD Grey)	Dpnyl GF- N9-310 (Natural)	Dpnyl 66 UF-N-012 (Black)	Dpnyl 66 GF-N- 5012 HS (Black)	Dpnyl 66 GF- N-3312 (Black)	Dpnyl 66 GF-N- 312 HS (Black)
1.58	1.35	1.15	1.55	1.37	1.34
0.40-0.60	0.31	1.3	0.30	0.36	0.36
1400 1200 52000 7	1400 1500 77500 9	950 1250 35000 9	1850 2500 90000 15	1850 2850 90000 14	1900 2600 95000 14
V0 960	V0 960	HB	НВ	HB -	HB
195	200	205	250	250	250

Polypropylene Compounds

Introduction

Dpron Polypropylene Compounds has the advantages of excellent comprehensive properties, good chemical stability, good shape processing performance and relatively low cost. It is adapt to a wider range of application requirements through modifying, copolymerization, grafting, blending, reinforced filling, Glass filling etc.

Chemical Structure of Polypropylene

Features of Dpron Compounds

- · Good fatigue resistance
- · Good hinging properties

- · Good chemical stability
- · Reasonably economical

We have a full range of Polypropylene Compounds for the use in injection Moulding. It is compounded with various Minerals (Talc, calcite, Wollastonite & Mica), Chemically coupled & Uncoupled Glass and other Chemical additives to give properties like High Flow, High Gloss, High Modulus-High Impact, Flame Retardant, It is available in Natural, Black & Colours.

Product Description

- 10% 40% Mineral filled compounds.
- 10% 40% Glass reinforced compounds.
- · Impact modified compounds for automobile applications.
- · Mineral filled high gloss compounds for appliances.

- Flame retardant compounds.
- · High tensile, chemically coupled glass compounds.
- PP Long term heat ageing (LTHA) compounds.
- · Special compound for energy meter enclosures.

Properties	Test Method Unit		Mineral filled / High Tensile Grades			
			Dpron MF- R-210 (Natural)	Dpron MF- R-212 (Black)	Dpron MF- R-210 HT (Natural)	
Physical Density Melt Flow Index @ 280°C /3.8 Kg.) Shrinkage (In Flow Direction @3.2 mm Thickness)	ASTM D792 ASTM D 1238 ASTM D 955	g/cc g/10 min %	1.06 9	1.06 15	1.06 11	
Mechanical Tensile Strength @ Yield Flexural Strength Flexural Modulus Izad Impact Strength (Notched) @ 23°C	ASTM D-638 ASTM D-790 ASTM D-790 ASTM D-256	Kg/cm² Kg/cm² Kg/cm² Kg.cm/cm	325 400 22500 4.5	390 440 25300 6.5	525 600 17500 7	
Flammability Flammability Rating At 3.2 mm Thickness	UL 94	mm/mm	НВ	НВ	НВ	
Thermal Heat Deflection Temperature @18.5Kg/cm²	ASTM D-648	°C	120	102	125	

Class	Grade	Filler Type	Typical Application
Mineral Filled/High Tensile	Dpron MF-R-210	20% Mineral filled Natural	Automotive parts, Appliances,
	Dpron MF-R-212	20% Mineral filled Black	Component Housings
	Dpron MF-R-210 HT	20% Mineral filled High Tensile	104 894
		Natural	
	Dpron MF-R-411 LTHA	40% Mineral filled Long Term	
		Heat Aging White	
Glass Mineral Filled	Dpron GFM-R-2511	25% Glass Mineral filled White	Electrical Housing & Accessories
Glass Filled/High Tensile	Dpron GF-R-110 HT	10% Glass Filled Natural High Tensile	Industrial Fans, Structural Parts,
chemically coupled	Dpron GF-R-210 HT	20% Glass Filled Natural High Tensile	Automotive applications
	Dpron GF-R-310 HT	30% Glass Filled Natural High Tensile	
Unfilled FR	DpronUF-R9-012	Unfilled FR Black	Electrical Components, Battery Cases

Chemical Resistance Properties

Chemicals	Polypropylene
Acids-concentrated	Good-Fair
Acids-dilute	Good-Fair
Alcohols Alkalis Aromatic	Good
Hydrocarbons	Good
Greases and Oils	Good-Fair
Halogenated	Good-Poor
Halogens Ketones	Good-Fair
2000年1月1日 日本公司	
という 日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	

	Glass Mineral Filled Grades	Glass Filled High Tensile Grades							Unfilled Flame Retardant
	Dpron-GFM-R-2511 (White)			Dpron-GF-R-310 HT (Natural)	Dpron-UF-R9-012 (Black)				
1.20 12.5	1.1 14 1.05	1.1 0.8	1.05 - 0.68	1.12 - 0.55	1.05 12				
275 450 23500 5	297 378 18500 8.73	700 850 45000 9	800 900 47500 10	950 1050 60000 11	250 275 12000 10				
НВ	НВ	НВ	НВ	НВ	VO				
135	130	135	145	150	105				

Utility Compounds

Introduction

Plastic Industry in India is growing at 14 to 15 % per annum including domestic as well as industrial polymers. It is boon as well as curse in terms of disposal, as in last five years India has came across many new high end engineering polymers at the same time awareness has also spread across the globe regarding global warming and plastics disposal in friendly manner with out harming the environment.

The interesting fact is till 1990's India was treated as Dump House for rest of the world but in last decade increase in local volume due to very big consumer market disposal has became an issue for country like India.

We at DPPL are taking a step forward to develop a compound which is environmental friendly creating new generation of plastics..... and that is.....

"UTILITY COMPOUNDS"

Physical g/cc g/10 min ASTM D792 1.21 1.21 1.21 1.21 ASTM D 1238 ASTM D 955 @ 280°C /3.8 Kg.) 0.64 0.64 0.64 0.64 Shrinkage (In Flow Direction @3.2 mm Thickness) Mechanical Tensile Strength @ Yield Flexural Strength ASTM D-638 600 600 600 600 Kg/cm² ASTM D-790 Kg/cm² 700 650 680 700 ASTM D-790 23500 23500 23500 23500 Kg/cm² Flexural Modulus ASTM D-256 Kg.cm/cm 6.5 6.5 Izad Impact Strength (Notched) @ 23°C 6.5 Flammability UL 94 HB Flammability Rating At 3.2 mm Thickness mm/mm HB HB HB °C ASTM D-648 125 125 Heat Deflection Temperature @18.5Kg/cm² 125 125

Polymer	Grade Filler Type		Typical Application	
Polycarbonate PC Unfilled B.White PC Unfilled Black PC Unfilled Grey PC Unfilled Ivory		Unfilled Pre colored	Electrical - Wiring Devices & Accessories	
mPPE Compounds	30% GF Natural 30% GF Black 30% GF Graphite Grey	Glassfilled	Impellers & Bowls for Pump Industry	
Nylon Compounds	Nylonó Unfilled Black Nylonó 30% GF Black Nylonóó 33% GF Black	Glassfilled / Unfilled	Automotive parts / Industrial Components	
PBT Compounds	PBT 30% GF FR Black	Glassfilled Flame Retardant	MCB / Electrical Components	

Processing Guidelines

 $Pre-drying - Predry the \ material \ at \ 100-120 \ ^{0}C \ for \ minimum \ 2 \ to \ 3 \ hours \ in \ hot \ air \ circulating \ oven \ Injection \ Moulding \ Profile$

Polymer	Feed zone to nozzel Temp. Profile °C	Injection Pressure Kg/Cm²	Screw Speed	Back Pressure	Mould Temp. °C
mPPE Utility Compounds	260 to 275	900 to 1500	Low	Low	60 to 90
PC Utility Compounds	260 to 270	900 to 1500	Low	Low	60 to 90
PBT Utility Compounds	230 to 240	800 to 1200	Low	Low	100 to 120
Nylon Utility Compounds	240 to 260	900 to 1400	Low	Low	60 to 90

Material Purging Instructions

Our Compounds	Purging Material	Special Instruction
mPPE Utility Compounds	HIPS	(After Moulding all & any Grades)
PBT Utility Compounds	LDPE/PP	(After Moulding GF & FR Grades)
PC Utility Compounds	SAN/LDPE	(After Moulding all & any Grades)
Nylon Utility Compounds	LDPE/PP	(After Moulding GF & FR Grades)

	mPPE			Nylon			Nylon		
mPPE 30% GF Natural	mPPE 30% GF Black	mPPE 30% GF Graphite Grey	Nylonó Unfilled Black	Nylonó 30% Glassfilled Black	Nylonóó 33% Glassfilled Black	PBT 30% GF FR Black			
1.26	1.26	1.26	1.14	1.26	1.34	1.65			
0.25	0.25	0.25	1	0.31	0.36	0.45			
1150 1250 75000 9	1100 1200 74000 8.5	1100 1200 74000 8.5	700 800 55000 5	1100 1200 74000 8.5	1500 2050 81000 8.5	1350 1600 75000 6.5			
НВ	НВ	НВ	НВ	НВ	НВ	VO			
130	130	130	135	130	200	200			

Trading Division Product Range

Products	Characteristics	Applications	
DIC PPS			
PPS or Polyphenylene Sulphide, is a strong rigid material made up of alternating sulphur atoms and phenylene rings. It can be used as an alternative to metals and thermo-set resins (depending on the product application).	1. Heat Resistance, Long term service temperature, > 200°C 2. UL94 V-0 Flammability without flame retardant 3. Excellent Dimensional Stability 4. Low water absorption 5. Low Thermal Expansion 6. Superior Strength & Modulus 7. Chemical resistance equal to PTFE 8. 2 main types: Cross-linked & Linear PPS	Automotive Cold & Hot water Applications Electrical & Electronics Other Applications	
M S Resin			
The MS Resin is a transparent copolymerization primarily composed of methyl methacrylate (MMA) and styrene monomer (SM). The proportion of MS Resin is lower compared to that of Acrylic, and the cost is also cheaper.	Excellent transparency Good optical properties Low hygroscopic Good weather resistance Easy to Process Low residual stress for molded products	Optical components Toys Lampshades OA accessories Food containers Household appliances Building materials	
Thermoplastic Polyurethane			
Thermoplastic polyurethane (TPU) is an elastomer that is fully thermoplastic. Like all thermoplastic elastomers, TPU is elastic and melt-processable. Further, it can be processed on extrusion as well as injection, blow and compression molding equipment. It can be vacuum-formed or solution-coated and is well suited for a wide variety of fabrication methodologies. TPU can even be colored through a number of processes. But more so than any other thermoplastic elastomer, TPU can provide a considerable number of physical property combinations making it an extremely flexible material adaptable to dozens of uses.	High resilience Good compression set Resistance to impacts, abrasions, tears, weather, and hydrocarbons TPU offers flexibility without the use of plasticizers as well as a broad range of hardness's and high elasticity TPU bridges the material gap between rubbers and plastics	Automotive Lumbar Supports Caster Wheels Constant Velocity Boots (Automotive) Flexible Tubing Food Processing Equipment Footwear—sport shoe soles Sporting Goods Swim Fins and Goggles Wire and Cable Coatings	
Transparent ABS			
Clear ABS has the same refractive index between Rubber and SAN phase. To match the Refractive Index of rubber phase, MMA monomer is added to matrix phase in the Clear ABS. Clear ABS is the Fusion Material with PMMA and ABS. (MMA Content : $50-70\%$)	Fusion material of MMA & ABS. Balanced physical property. Reasonable cost. Excellent productivity.	1. Dish Washer 2. Ball Pen 3. Tooling Box 4. Cosmetic Vessel 5. Meter Cover 6. Washing Machine Parts 7. Humidifier	
Polycarbonate (PC)			
Palycarbonate is most commonly known as PC. It falls into the polyester family of plastics. PC resin is an amorphous engineering thermoplastic with high mechanical, optical, electrical & thermal properties. PC is available with UV stabilized and mold release grades. It is also available in FDA compliant, Flame Retardant & high flow grades.	High impact resistance Outstanding dimensional stability Crystal clarity with excellent toughness.	1. Automotive 2. Electronics & Electrical 3. Healthcare 4. Packing 5. Textile Bobbins 6. Lamp Reflectors 7. Disposable Food Containers 8. Electrical Components	
ABS Resin			
ABS is thermoplastic resin made from three-dimensional monomer of Acrylonitrile, Butadiene, Styrene. This material is a terpolymer of acrylonitrile, butadiene and styrene. Usual compositions are about half styrene with the balance divided between butadiene and acrylonitrile. Considerable variation is, of course, possible resulting in many different grades of acrylonitrile butadiene styrene with a wide range of features and applications. In addition, many blends with other materials such as polyvinylchloride, polycarbonates and polysulfones have been developed. Acrylonitrile butadiene styrene materials can be processed by any of the standard thermoplastic processing methods	ABS possesses outstanding impact strength High mechanical strength, which makes it so suitable for tough consumer products ABS has good dimensional stability and electrical insulating properties	Used for electric/electronic parts Automative parts Telephone bodies Safety helmets Piping, furniture, car components TV casings, radios, control panels	

Certificates

	31/02/20	TEST REPORT	19.3	110000	
leport No. : GR:HL:44	H9001103		DA	TE:304	4/2013
NEA PETROCHEMICALS PY FAJANIANT IND ESTATE A WILLIAMONIA 81. ISAS INDIA PRIVATE LITO. MTACT PERSON: SHAMA	T. CTD. AMEHANDER (Alternacials Al SINGH	A LANS VALME VILLAGE KINCHPADAJA		CLETOM	
UNITEY OF CHECKE MINE RECO CHE TITS I RECORDETED reclassion	NEGO. 20104/2410 Ro46 TEST Besedon th Lent Meca Polybooming 2011/08/EU	D DPNOFITIES MATE TESTING FERROR: 2004/20 FOR Pt. Od Ha. Ode, FIED & PROCE partitioned hadro on calculated camples in partitioned hadronised companies, Filly Administrational description, Filly Administration of FIECE company with Administration of FIECE company Testing of	ou pie ident's bromissied bigs	regilement lengto PGE	
) for carepte weedphore for sample :P Sest formist:	PE UNFILLE	D DRYON UP 64-010	Besults		
Codesant Coll	People	With reference to EC	Results 0.4	MOL	Liest
		62521 2006, and performed by ICP-ORS			
Lead Phi	rughg	With reference to IEC 92921 2009, and performed by ICP-OBS	nd.		1900
Olerousy (Hg)	mghg	With reference to EC 02321.2008, and performed by 1CP-OSS	ad	5	1900
Heravalent Ohmenum ICWN	mghg	With reference to EDC 00301 2006, and performed by UV- Spectrophotoseter	ad	*	1900
Sum of PSEs	mglig	With reference to EC 42321 2016, and performed by SCAMS	nd.		1900
Mondomodishard	mghg	With reference to EC 92921 2000, and performed by GC-MS	nd	**	1.
Discondistanyl	mglig	With reference to EC epitor 2006, and performed by GC-MS	nd	9	7
Tibromotiphenyl	mgNg	With reference to EC ecotor 2008, and performed by	nd	54	-
TatrateroreologiFerrori	reglig	With reference to EC 42321 2008, and performed by	nd.	10	*
Haustrotrotriphony!	nglig	With reference to RC 62321 2008, and performed by	nd	. 80	-
	mgkg	With reference to EC	n.d.	58	-
Tahtabrone-day/Yeary)	reglig reglig	With information to ECC 92212 2000, and performed by 925-MS. With reference to ECC 92212 2000, and performed by 925-MS. With information to ECC 92221 2000, and performed by 925-MS.	nd nd	10	

